Improving Medical Efficiency with Machine Learning

Dana Lane
March 28, 2024
10 mins de lectura
Natividad Chichón
03/2024
10 mins de lectura

Medical coding is a crucial process that converts clinical documentation into standardized medical codes for various purposes, such as insurance reimbursement and performance analysis. With the increasing demand for accurate and efficient medical coding, several solutions based on artificial intelligence have been proposed to assist in the process. However, their effectiveness is limited, and there is a need for more innovative approaches.

To address this issue, a study was conducted to develop a multimodal machine learning-based solution that detects the degree of coding complexity before coding is performed. The notion of coding complexity was used to better distribute work among medical coders to minimize errors and improve throughput.

To train and evaluate the approach, the researchers collected 2060 cases rated by coders in terms of coding complexity from 1 (simplest) to 4 (most complex). Two expert coders rated 3.01% (62/2060) of the cases as the gold standard. The agreements between experts were used as benchmarks for model evaluation. A case contains both clinical text and patient metadata from the hospital electronic health record. Text and metadata features were extracted, concatenated, and fed into several machine learning models. Two models were selected for evaluation.

The first model achieved a macro-F1-score of 0.51 and an accuracy of 0.59 on classifying the 4-scale complexity. The model distinguished well between the simple (combined complexity 1-2) and complex (combined complexity 3-4) cases with a macro-F1-score of 0.65 and an accuracy of 0.71. The second model achieved 61% agreement with experts’ ratings and a macro-F1-score of 0.62 on the gold standard, whereas the 2 experts had a 66% agreement ratio with a macro-F1-score of 0.67.

In conclusion, the proposed multimodal machine learning approach leverages information from both clinical text and patient metadata to predict the complexity of coding a case in the precoding phase. By integrating this model into the hospital coding system, distribution of cases among coders can be done automatically with performance comparable with that of human expert coders, thus improving coding efficiency and accuracy at scale. This approach has the potential to significantly improve the efficiency of medical coding processes, reducing errors, and ultimately improving patient care.

References:

Xu H, Maccari B, Guillain H, Herzen J, Agri F, Raisaro JAn End-to-End Natural Language Processing Application for Prediction of Medical Case Coding Complexity: Algorithm Development and ValidationJMIR Med Inform 2023;11:e38150URL: https://medinform.jmir.org/2023/1/e38150DOI: 10.2196/38150

Tratamientos de salud mental

Por qué Mential

Recupera la calma con sólo 5 minutos al día.
Fácil y rápido desde tu móvil. Seguimiento y apoyo diario con objetivos claros. Programa corto de 4 meses.

Mential Care: Chat
50€/mes
Programa de 4 meses
done
Chat ilimitado con tu psicólogo
done
Terapia con ejercicios diario
done
Seguimiento de objetivos
done
Comunidad virtual
Mential Plus: Videollamada
150€/mes
Programa de 4 meses
done
Sesión semanal 60 minutos
done
Terapia con ejercicios diario
done
Seguimiento de objetivos
done
Comunidad virtual
Nuestro programas

Nuestra solución de bienestar

Tus empleados y clientes buscan apoyo para su salud mental a niveles sin precedentes. Con mential puedes brindar atención más rápida y efectiva que nunca.

Rapidez

Tratamientos sin esperas. Programa diario y con apoyo de nuestros terapeutas. Objetivos semanales y duración de 4 meses.

Eficaz

El 89% de nuestros pacientes terminan nuestros programas con grandes mejoras en sus niveles de ansiedad o depresión.

Duradero

Nuestro enfoque de psicología de precisión permite lograr cambios positivos y duraderos.

Guía de salud

La voz de los expertos

Nuestro equipo de psicólogos acreditados ha creado toda una guía para ayudarte con todas tus dudas sobre salud femenina. Somos expertos en cada una de las etapas por las que las mujeres pasamos a lo largo de nuestra vida. Apoyamos a nuestras pacientes para superar la ansiedad, el miedo, el duelo y la pérdida, el bajo estado de ánimo o el estrés.

AI has the potential to revolutionize healthcare by making it more efficient, effective, and personalized.
Virtual care is transforming the future of healthcare.
Digital psychiatry to transform the way we approach mental healthcare.

Suscríbete a nuestra Guia de Salud

Te mantendremos informada sobre todo lo que tiene que ver con la tu salud mental.

Te acabas de suscribir.
Parece que algo ha ido mal, intentelo de nuevo